开关电源之雷击浪涌大解剖
开关电源之雷击浪涌大解剖
雷击浪涌发生后开关电源不能损坏。两种通常的类型,“雷击” 和“振铃” 波。
GDT 陶瓷气体放电管 Gas Discharge Tubes
TVS 瞬态抑制二极管Thyristor Surge Suppressors
瞬态抑制二极管是一种限压型的过压保护器件,以pS 级的速度把过高的电压限制在一个安全范围之内,从而起到保护后面电路的作用。
MOV 压敏电阻Metal Oxide Varistors
压敏电阻是以氧化锌为材料烧结而成的半导体限压型浪涌器件,它以其优异的非线性特性和超强的浪涌吸收能力被广泛应用于电子电路中进行保护。
PTC 自恢复保险丝 Positive Thermal Coefficient
自恢复保险丝是一种过流电子保护元件,采用高分子有机聚合物在高压、高温,反应的条件下,搀加导电粒子材料后,经过特殊的工艺加工而成。
静电保护阵列具有反应速度快,小於0.5nS,导通电压低,体积小、集成度高能同时实现多条资料线保护,电容值较低,可达0.3pF,是理想的高频保护器件。
GGD 玻璃放电管 Glass Gas Discharge Tubes
A. L→E , N→E, L&N→E 测试属于共模(Common Mode)
B. L→N 测试属于差模(Differential mode)
以下是做雷击测试时Common Mode 和Differential mode 的路径如下图所示
共模雷击能量泄放路径,(参考上图绿线) ,首先考虑跨初、次级会因安全距离不足而造成其雷击跳火或组件损坏的路径有那些?(变压器 /光耦合器 /Y-Cap)针对这三个组件选择与设计考虑如下:
因变压器横跨于初、次级组件, 依照工作电压有不同的安规距离要求, 一般采
用Class B 的等级, 零件本身初次级需通过Hi-POT 3000Vac , 需特别注意脚距离与铁心的距离以及绕组每层胶带数量是否符合绝缘强度。
组件本身的距离需符合安规的要求, layout 时零件下方不可有Trace 避免距离
本身的特性是高频低阻抗的组件,当共模雷击测试时,能量会快速通过Y-Cap
所摆放的路径, 因此layout 布局时半导体组件(PWM IC , TL431, OP…) GND
trace 应避开Y Cap 雷击能量泄放路径, 以避免成零件的损坏
雷击能量流经的路径主要在桥式整流器前的L 和N 回路, 主要对策如下: Varistor(MOV) 或 Spark Gap(雷击管)吸收 等组件吸收并抑制能量流入power supply 内部。
1. Thermistor (NTC) :串接于L or N 的路径上,会增加回路的阻抗值,进而降低进入Power supply 的电流能量。
4. 在layout 上规划出锯齿状的铜箔形式,两端距离约1mm,当Common Choke 两端的压差太大时,产生尖端放电的现象,将能量进而宣泄。
除了上述设计上所应注意的地方之外, Layout 上如何达到对电击的防制亦是重要一环。
A. 一次侧的部分,Ground 的layout 顺序大电容的Ground →Current
sensor→Y-Cap→一次侧变压器辅助绕组Vcc 电容的Ground→PWM IC 外围
B. 二次侧的部分:1. TL431 的地接至第二级输出电容的地。
C. 二次侧Y-cap 的出脚接至二次侧变压器的ground 。
A. L,N 两线距离2.5mm 以上及与E 的距离在4mm 以上。
5. 以上电容都要尽量要靠近IC,以防止瞬间电压进入PWM IC(尤其是负电压)。再来
6. 就Ground 的处理, 首先将PWM IC 之 CT / CS / COMP 所有GND 接在一起后,单点
7. 进入IC GND,再接至Vcc 电解/陶瓷电容的Ground 最后再接至辅助绕组的Ground。
对于layout ground 的部分用实例来解释 如下图所示, Ground 的layout 准则
2.由大电容的地先到变压器的地再到辅助绕组 Vcc 电解电容的地。
3. 由辅助绕组 Vcc 电解电容再分出去给光耦合器的地及IC 外围陶瓷电容的地,最后接到PWM IC 的地。
– 没有误动作: 4 kV / 12 Ω共模, 2kV/ 2 Ω 差模
– 可以交流重启(关机,短时间不工作): 6kV / 12 Ω 共模, 4kV / 2Ω差模
– 一个非常短的重置时间如: 15s 或1分钟, 使其很难通过测试, 原因为压敏电阻和其他的部分没时间把温度降下来!
差模雷击是高电压加在L和N线之间.电流从L线流入从N线流出共模雷击(1)
当开关在接右位置,电压加在L线和大地线上(雷击发生器上显示“L1/PE”).
当开关在接左位置,电压加在N线和大地线上(雷击发生器上显示“L2/PE”).
当雷击发生器设定为“L1, L2 / PE”, 开关同时接到两线上。这是唯一真的共模雷击测试设定。如果客户简单说共模雷击指的就这个设定.
系统只有两线输入,输出有悬空(不接大地), 共模雷击是没有意义的! (很容易通过测试, 只要输出真的悬空)
差模雷击产生高的差模电流能导致输入大电容的电压升高,而损坏输入大电解电容和开关管的漏极。
共模雷击会产生非常高的共模电压,共模电压能造成电弧放电。电弧放电发生会产生一个非常高的高频的电流。如果没有电弧放电发生,电流比较小,只有寄生电容Cparasitic * dv/dt.
当发生一个电弧放电,会得到一个非常高的峰值高频电流,高频电流产生噪声能耦合进入低压电路导致误动作。
– 非常高的差模电压导致输入回路产生过高的电压和过大的电流,损坏输入端的元器件(保险丝,输入整流桥,X电容,压敏电阻,开关管)。
– 高频电流能导致不安全的高压振铃,可以损坏像肖特基二极管等器
– 要想漏极在输入电容电压升高时不损坏,需要加入输入的过压保护线路,在输入电压高一定值,停止开关,漏极电压就会降低,就像TOP系列都有输入过压保护线路
● 如果保险丝烧断,考虑更大的保险丝(更高的I2f),但不要使用“电路保护保险丝”
● 如果因为差模雷击电流太大造成的失效(比如:保险丝,RT1),可以外加一个差模电感来减少峰值电流
● 注意:有些电感非常容易饱和,电感从流过它的电流中存储大量的能量,然后可能因为释放能量产生高压而引发电弧放电或者烧毁电感(所以电感在布线时需要加放电针)。
● 注意:有些电感器会非常饱和,从电流中存储大量的能量,然后可能因为释放能量产生高压而引发电弧放电或者烧毁电感。
– 记住压敏电阻是一个电压箝位----如图:压敏电阻会增加在他左边的器件上的峰值电流
– 例如:在X电容上并联一个压敏电阻,保险丝和RT1上的雷击电流会增大。
有时在大的电解电容上的短时间尖峰电压(因为电容的等效串联电感ESL和引脚电感造成的), 损坏漏极.
解决的办法:在输入电解电容靠近开关管和变压器处并联一个高频的旁路电容,缩小回路面积会有帮助的。
手机,路由器,机顶盒等其他应用,其输出接天线或者外接线的电源设备,需要按上图测试雷击加在输入端和输出端.
● 注意:在左边,雷击加在L和N线上(“L1,L2 / PE”)
如果你设定雷击发生器为“L1/PE” 或“L2/PE”,共模和差模电流结合的效果
在比较差的电路图中,电流流过变压器耦合电容(初级和次级耦合电容)和Y电容,电流流过C脚的电容地和IC的地之间的连线,连线上有杂散电感,造成电压下降,将显示在C脚电压上(共模阻抗耦合)
● 能注入一个非常大的电流造成C脚误动作,损坏或者锁住(和爆掉)
如果雷击有加但没有穿过电源, (e.g. 输出不接地),然后只有Y电容要耐压。
有时,必须结合测试把雷击发生器的地线接到交流接头上的大地端子上和输出共模.
● 一些电源有金属底架,和有的在内部有接地线,接到AC端子的接地线上
● 举例,如果系统有金属底架,和这金属底架是接地的,必须试着把底架的接地点接到雷击发生器的地
附加小技巧
修理和预防任何的电弧放电。因为电弧放电导致大的高频电流流。
● 一旦发生电弧放电,会在铜皮的上留下痕迹,这个地方很容易再次发生电弧放电地方。因此需要改善这个地方
● 如果压敏电阻容易炸裂开,可以在压敏电阻上加热缩套管。压敏电阻放在离保险丝比较远的地方。
– 控制IC的低压脚,思考一下“共模阻抗在哪里使高频电流造成问
– 例如,共模电感,差模电感,或者电阻串联在光耦器上----但是记
常见的保护方法是在AC 输入端先串一个熔断型保险丝(fuse)做过电流的保护,然后在两线L-N 之间并联压敏电阻(MOV)可以有效地抑制差模出现的异常过电压,起到对后级电路的保护。
这里我们也可以用陶瓷气体放电管(GDT)来替代温度保险丝,分别使用两种器件的不同在于采用放电管后浪涌冲击时,残余电压会更高,而浪涌通流能力会增强。